
1

Fast Terrain Rendering Using Geometrical MipMapping

Willem H. de Boer, whdeboer@iname.com
E-mersion Project, October 2000, http://www.connectii.net/emersion

1 INTRODUCTION

There is a variety of algorithms out there that speed up
rendering of terrain-data, varying from simple quadtree
based frustum-culling of unseen terrain chunks to using
occluder sets to using (continuous) Level of Detail. All of
these techniques serve the purpose of reducing the
amount of triangles to be pushed through the rendering
pipeline. Many terrain rendering algorithms use a
combination of several of these techniques to even further
speed up rendering. Famous examples are the ROAM
algorithm [3], Lindstrom et al. SIGGRAPH ’96 paper on
terrain rendering [1], and NDL’s approach to terrain
rendering to be used in real-time games [2]. Most of these
algorithms were invented (long) before hardware
rendering became the industry’s standard, and therefor
may not be suitable to be used in conjunction with 3d
hardware rendering anymore. Therefor, new algorithms
must be found that will give the best results when used
together with 3d hardware rendering. Because 3d
hardware is able to process and render a large amount of
triangles per frame, the algorithm can resort to more
conservative culling methods, thereby not necessarily
delivering the ‘perfect set’ of render-data, but pushing as
much triangles through the pipeline as hardware can
handle, with the least amount of CPU overhead. I have
come up with a method which complies to the above said
and - as far as I know - has not been used before. The
algorithm has been implemented as part of the E-mersion
project. This paper will give a full description of the
algorithm.

2 OVERVIEW

This section describes the complete algorithm cut up into
three distinct parts. The first part will give an outline of
the representation of terrain-data, how it is organized in
memory and how it will eventually be rendered. Section 2
talks about basic frustum culling of terrain ‘chunks’, and
the last section describes GeoMipMaps using the
standard mipmap technique for textures as an analogy.

2. 1 Terrain-data representation

Representing the terrain can be done in several ways, but
I have chosen to use the one that is used by the majority
of today’s terrain-rendering engines. The reason I have
chosen this representation is that it 1) is simple to
implement, 2) requires minimal hard-disk storage, 3) is
suitable for GeoMipMaps, as is explained in section 2.3.
One disadvantage of this representation (which is
basically a 2d solution) is that it does not support
‘overhangs’.

Figure 1: Top-view of a terrain block mesh
representation. The white circles represent the mesh’s
vertices. The lines represent the connections between
vertices. Note that each quadrilateral (or quad) is built
up out of 2 triangles.

The terrain is laid out in a grid of vertices with a fixed
distance between eachother. The horizontal and vertical
number of vertices in the grid must be of the form 2n+1,
where n ∈ [1,→). This will result in 2n quadrilaterals,
with 4 neighbouring vertices acting as its corners. Each
quadrilateral consists of 2 triangles, which are used as the
draw-primitives that are eventually sent to the graphics
pipeline.
 Each vertex’ x and z components are set to a fixed
value, which will not be altered during the entire process.
The vertex’ y component represents the terrain’s height-
value at that particular position, which is read - at terrain-
load time - from a 8-bit gray-value bitmap file that has
the exact same dimensions as the terrain grid. The entire
terrain grid is then cut up into, what I call, terrain blocks
which have a fixed size and must be of the form 2n+1
(n ∈ [1,→)). This is a preprocessing step for the quadtree
frustum-culling stage which will be explained later, and
these blocks will also serve as the level 0 primitives for
GeoMipMaps (see section 2.3). Figure 1 shows such a
terrain block, which is 5x5 vertices. The actual size of the
terrain block can be chosen freely. In the E-mersion
implementation this is 17x17, which I have found to be
the fastest considering my total terrain-grid size of
257x257. Experimentation is of great necessity here.
 One advantage of having this particular terrain block
layout is that one such block can be optimized for
rendering, using one draw-primitive call for the entire
block and, even better, using indexing to get rid of
multiple transformation of vertices. A small disadvantage
of terrain blocks is that the vertices of each of the 4 edges
are shared by the neighbouring terrain blocks and therefor
will be transformed twice.

2

2.2 Basic view-frustum culling

Because large parts of the terrain will not be visible (i.e.
not inside the view-frustum) from a certain camera point,
they need not to be rendered and therefor should be
culled away early to prevent unnecessary calculations. A
method which has proven to be quite effective for fast
culling is a data structure called a quadtree. I am not
going to explain quadtrees here, because there exist many
good tutorials/papers/articles on them on the internet.

The quadtree is generated at terrain load time, and
consists of 3d boundingboxes only. The size of the terrain
together with the size of the terrain blocks decide the
eventual depth of the quadtree. Quadtree nodes consist of
3d boundingboxes which physically contain the node’s
entire sub-tree’s boundingboxes, where - at the leaf - the
actual terrain block’s bounding box can be found. Each
leaf has a reference to the terrain block that it is
boundingbox contains. The reason quadtrees are used
over octrees is that the terrain layout is essentially 2d, and
therefor we can suffice with a 2d spatial organization
scheme.
 Terrain blocks are marked visible when the leaf’s
boundingbox is at least partially inside the view-frustum.
After having completed descending the tree, starting
culling at the tree’s rootnode and proceeding from there
on, marking terrain blocks either visible or invisible, we
are left with a set of terrain blocks which can be
immediately sent to the graphics pipeline. Because terrain
complexity can be quite high, we will not get the
desirable framerate unless the terrain is very small; the
above described method will not suffice for high
complexity (eg, a large grid) terrain. This is where I
introduce a new term: GeoMipMaps. They make this
terrain rendering method unique and suitable for 3d
hardware rendering as I will describe next.

2.3 The Texture Mipmap Analogy (introducing
GeoMipMaps)

Terrain blocks that are far away from the camera do not
need to be rendered with the same detail as terrain blocks
that are near the camera. They can be approximated by a
lower resolution version, thereby drastically decreasing
triangle count and increasing render speed. This is called
Level of Detail, a term which is famous among many,
and is used in many of today’s terrain rendering
algorithms. Many of today’s algorithms for fast rendering
of terrain data use some sort of Level of Detail scheme,
although many reside to per-triangle methods which are
not suitable for use in conjunction with 3d hardware
rendering. To reduce CPU performance overhead, we
should perform Level of Detail on a higher level, and this
is where GeoMipMaps kick in.

Consider the ordinary mipmapping technique for textures
[5]. A chain of mipmaps is created for each texture, the
first item in the chain is the actual texture with each
succeeding item being the previous item scaled down to
half its resolution, until a desired number of items
(levels) is reached. When a texture is at certain distance,
d, from the camera, the appropriate level in the mipmap
chain is chosen and used for rendering instead of the
actual high resolution texture. We can apply this concept
to three-dimensional meshes too, where the high

resolution texture’s 3d equivalent is the terrain block, and
mipmaps are calculated by scaling down the terrain
block. Figure 2 shows a terrain block and its direct
successor in the mipmap chain. This chain can, ofcourse,
be extended by another item in the chain, which is of
even lower resolution. We can precalculate and store
these GeoMipMaps in memory preferably at terrain-load
time.

From now on, this paper will use the term GeoMipMap
level 0 for the default resolution terrain block, and
GeoMipMap level N (N ∈ [1,→)) for each lower
resolution version.

Figure 2: Default resolution of terrain block mesh on the
left (GeoMipMap level 0), and a lower resolution version
(GeoMipMap level 1) on the right. Note that a
GeoMipMap level 2 can also be generated.

2.3.1 Choosing the appropriate GeoMipMap
level

Deciding which GeoMipMap level to use for which
distance (d) is something I would like to explain in this
section. Using a preset (fixed) d for each GeoMipMap
level will result in unwanted popping artifacts. Switching
from one level to another at a fixed d without any
condition will result in a sudden change in geometry;
vertices being added at a decrease in GeoMipMap level,
and vertices being omitted at an increase in GeoMipMap
level. Have another look at the Figure 2. When switching
from level 0 to level 1 the white vertices of level 0 will be
removed to get level 1. This gives a wrongness to the
overall terrain, and looks incorrect when viewed up close.
When looking at texture mipmapping, the algorithm only
chooses a lower resolution mipmap when the current
mipmap’s pixel-to-texel ratio is no longer 1:1, this occurs
at a certain d [5]. The exact computation for choosing
the appropriate level resides in hardware, and really does
not matter to us now. We can apply the same kind of
concept to GeoMipMaps to reduce popping artifacts.
 When switching from GeoMipMap level 0 to 1, the
decrease in detail will give a wrongness or error to the
terrain block. This is caused by the the removal of
vertices, which will give a change in height δ as shown in
figure 3. This δ will be less noticable the greater d will
become, because of perspective. We can also project δ to
its equivalent length in screen space pixels (which we

3

will call ε), which is eventually what the user will notice.
When ε exceeds a certain threshold τ of, say, 4 pixels, the
error will be too noticable and therefor it is not permitted
to switch to a higher GeoMipMap level until ε is smaller
than τ. But because every GeoMipMap level consists of
several of these errors (one for each vertex that has been
removed), we must somehow calculate which δ to take to
project to screen-space pixels. By taking the resulting δ
from max{δ0,…, δn-1} (where n is the number of δ’s in the
GeoMipMap) to calculate ε for, we have covered the
worst-case scenario. If this particular value is lower than
τ, then all the GeoMipMap’s error value’s will be smaller
than τ. And vice versa, if this value is higher than τ, there
will be at least one error that is too noticable (eq, is
higher than τ). We choose this δ at GeoMipMap creation,
and store it. From now on, if δ or ε is being mentioned,
the GeoMipMap’s max{δ0,…, δn-1} or max{ε0,…, εn-1} is
is meant (n is number of δ or ε values in GeoMipMap).

Figure 3: Vertex error as seen from the side. The dotted
line represents the geometric height-change (δ) which
will occur when removing the white vertex.The exact
height-change value can be calculated by substracting
the white vertex from the gray vertex. After removing the
white vertex, the vertex’ position, will be at the
imagenary gray vertex.

In order to find out whether it is appropriate to switch to a
higher GeoMipMap level for a given d, we must compare
the current GeoMipMap’s ε to τ. If inequality ε > τ is
true, then switching to a higher level will result in too
great of an error. If it is does not, then it is allowed to
move one level up. Note that the next GeoMipMap’s
level ε is also lower than τ, in which case we can use that
GeoMipMap level, and so on, until the right level is
reached.
 The correct inequality to solve the above mentioned
condition can be found in [1]. A 3d-space equivalent, that
uses a 3d-equivalent of τ, can be found in [4]. The
formula mentioned in [1] calculates the exact value for ε
from any given point of view relative to the GeoMipMap.
The higher the slope of the camera’s view vector relative
to the GeoMipMap, the smaller ε will be, and the higher
the probability of using the higher level GeoMipMap will
be. This means that, if the camera’s direction vector is
parallel to the x/z plane (i.e., is horizontal) ε will be at its
highest. We can use this fact to speed up our
GeoMipMap level decision algorithm.

2.3.1.1 Speeding up GeoMipMap level decision

Because of the ability of 3d hardware rasterizers to render
a large amount of triangles, we do not need to calculate
the ‘perfect-set’ of triangles anymore. If using a less
exact algorithm will result in less CPU overhead, it is
best to use it, as the extra amount of triangles that are
generated does not stand up to the fact that it required

less CPU time. The goal is to send as much triangles to
the hardware as it can handle.
 Back to GeoMipMap level decision. Calculating ε and
comparing it to τ for every visible GeoMipMap every
frame can be very processor intensive. Because,
according to [1] and [4], ε depends on d and the position
of the camera relative to the position of the GeoMipMap,
there is no way to precalculate ε for each d and putting it
into a Look-Up Table (LUT). But if we treat the camera’s
direction vector as being permanently horizontal (i.e. not
vertical slope), we can precalculate ε. This will not
deliver precise results for cases where the vertical slope
of the camera’s view vector relative to the GeoMipMap is
high; it will generally use too high detail for these high
slope cases, but when reading the previous paragraph it
should not be a problem. We have essentially brought
down CPU overhead to a minimum.
 To even further speed up this process, at terrain-load
time an extra data field in each GeoMipMap level is
computed, which is set to the minimum d (D) at which
this level can be used. Now when choosing the
appropriate level for each visible GeoMipMap each
frame, it suffices to compare d to Dn (where n is the
GeoMipMap’s level). See Figure 4 for pseudo-code.

For Each GeoMipMap Level N
 Compare L to DN
 if (L > DN) store to RESULT
End For
return RESULT
Figure 4: Pseudo-code for choosing the appropriate
GeoMipMap level, where L is the distance from the
camera to the center of the GeoMipMap in 3d, and D is
Dn.

2.3.1.2 Pre-calculating d

To precalculate the Dn for each GeoMipMap level, use
the equation shown in Equation 1. This equation takes δ
as a parameter and returns the appropriate Dn. Note that it
is advisible to have a symmetrical view-frustum, which
should be set up using the (l, r, b, t, n, f) view-frustum
parameters.

Dn = |δδ| · C
Equation 1: Use this equation to calculate Dn for δ. C is
a constant which can be calculated using the
equation found in Equation 1a)

A
C =

T
Equation 1a), used to calculate C. A and T are constants
which can be calculated using the equations found in 1b)
and 1c) respectively.

n
A = —

|t|
Equation 1b), used to calculate A. n is the near clipping-
plane, and t is the top coordinate of the near clipping-
plane, as in (l, r, b, t, n, f).

4

2 · ττ
T =

 vres

Equation 1c), used to calculate T. vres is the vertical
screen resolution in pixels.

To save a square-root instruction every time the distance
from the current camera to a GeoMipMap must be
calculated in real-time, Equation 1 can be rewritten as
shown in Equation 2. Pre-calculating Dn

2 will reduce the
real-time distance GeoMipMap to camera calculation to
d2 = (ex – cx)

2 + (ey – cy)
2 + (ez – cz)

2 , where e is the
vector [ex, ey, ez] which is the current position of the
camera, and c is the vector [cx , cy , cz] which is the center
of the current GeoMipMap being processed.

Dn
2 = δδ2 · C2

Equation 2: Equation 1 squared, saving a square-root
instruction for every d calculation per GeoMipMap per
frame.

2.3.2 Solving geometry-gaps

When two neighbouring GeoMipMaps in the terrain have
different levels of detail, cracks at the edges of the
GeoMipMaps will occur. This is not desirable for any
application of terrain rendering, and should be avoided.
Edges of GeoMipMaps with more detail (i.e., more
vertices) contain extra heightmap information as opposed
to edges of GeoMipMaps with less detail, and when these
two GeoMipMaps share edges, terrain geometry-gaps
will show up. Solving this problem essentially implies a
re-arrangement of vertex connections so that edges
tightly fit with eachother.
 One way to solve this, is to add the extra vertices at
the edge of the lower detail level of the two neighbouring
GeoMipMaps so that it will fit with the highest detail
GeoMipMap’s edge. This implies that the default vertex
layout and connectivity of vertices for the low detail
GeoMipMap level must be changed dynamically, and
must be updated whenever the neighbouring GeoMipMap
changes levels. An extra copy of the original
GeoMipMap must be made and stored in memory. This is
a slow and memory consuming task, and so this method
should be avoided.
 Another way to solve this, is to level those vertices of
an edge of the higher detail GeoMipMap that add to the
detail, so that it will fit the lower detail GeoMipMap’s
edge. This will cause so called T-junctions, or T-vertices.
Because of floating-point inaccuracies, these will deliver
a very noticable ‘missing pixels’ effect.
 I have found a good way of solving terrain geometry-
gaps or cracks, which does not alter the GeoMipMap
level’s vertex layout, and will not produce the ‘missing
pixels’ effect. The only thing it does is changing
connectivity (or indexing) of vertices for the higher detail
GeoMipMap. Have a look at Figure 5. You will see the
higher detail GeoMipMap which shares its left edge with
a (not showed in figure 5) lower detail GeoMipMap. The
gray vertices carry the additional heightmap data, which
causes the cracks. By omitting these vertices from being
‘connected’, the edge will seamlessly fit with the lower
detail GeoMipMap. A fast way of rendering this is by
using two triangle-fans for this edge, emerging from the
top-left black vertex, and the black vertex directly under

it. The remaining vertices are drawn in the normal way.
This process must be performed for each of the four
edges which connect the GeoMipMap to a lower detail
GeoMipMap. When implementing the algorithm, this
means that every GeoMipMap level 0 must have
references to all of its four neighbours.
 A downside of this method is that, when changing
connectivity of vertices, a slight change in (gouraud)
shading will occur. This sometimes can be spotted in
real-time, but it is only slightly noticable.

Figure 5: Solving T-junctions and terrain geometry-gaps
between a higher level (lower resolution) left-neighbour
GeoMipMap. Note that, although the vertices marked
gray are still part of this GeoMipMap’s mesh, they are
not being rendered because of the use of a triangle fan.
Omitting rather than adding vertices, has the advantage
of not having to change anything for any GeoMipMap.
They can remain the same, the only thing that changes is
the connection data.

3 EXTENSIONS TO THE BASIC
APPROACH

Although the basic approach delivers results which will
be satisfactory for use in applications such as real-time
fast-action games, there may be some applications that
need a more sophisticated solution to two problems,
which I will describe and give a solution to in the next
two sections.

3.1 Trilinear GeoMipMapping

Although using screen-space pixel errors to select
GeoMipMap levels will deliver a tremendous decrease in
popping artifacts, there will still be some occasional
popping, especially when τ is set to a high value.
Although setting τ to 1 or less will eliminate popping
altogether, it also implies that the probability of using a
higher level GeoMipMap (lower detail) will be very low.
A certain value of τ has to be found which gives a good
balance between keeping low triangle-counts and keeping
popping-artifacts to a sufficiently low level. This value is
unique for every application. To keep triangle-count low,
without any popping I will once more use the texture
mipmapping analogy, looking at a technique called
Trilinear Filtering.

5

When looking at ordinary texture mipmapping, one can
clearly see the borders of where two mipmaps of different
levels touch eachother. These borders, or lines if you will,
occur at fixed distances from the camera and can be
eliminated by using Trilinear filtering. I am not going to
explain the details of Trilinear filtering here, but the
concept is simple. Instead of choosing a discrete mipmap
for a certain d and using this until a d is reached for
which a higher level mipmap can be used, an
interpolation of the mipmap with the mipmap one level
higher is calculated using the fractional distance of both
mipmap’s precalculated d. This will give a smooth blend
of mipmaps for any value of d. This same principle can
be applied to GeoMipMaps. Have another look at Figure
2. GeoMipMap level 0 has a certain precalculated d (D0)
which indicates at what d this level can replace the
preceeding level for rendering. The succeeding level has
an equivalent d (D1). If we calculate the fraction between
these two, as shown in Equation 3, we can use this
fraction as a multiplier (see Equation 4) for the white
vertices of GeoMipMap level 0. This will slowly ‘morph’
level 0’s geometry to level 1’s until d has reached D1,
after which level 0 can be replaced by level 1. This
essentially replaces the sudden change (popping) of
GeoMipMap levels with a smooth transition between
both.

 (d – Dn)
t =

 (Dn+1 – Dn)
Equation 3: Calculating the interpolation fraction t. d is
the distance from the camera to the GeoMipMap, Dn is
the precalculated d for the current GeoMipMap, and
Dn+1 is the precalculated d for the succeeding
GeoMipMap.

v’ = v – t · δδv

Equation 4: Used to calculate the new vertex position, v’,
for white vertex v. δv is the height change (geometric
error) of v. See figure 3.

Any edge’s white vertices that are neighbours with lower
detail GeoMipMaps should not be multiplied by t, as
these do not contribute to the GeoMipMap anymore (see
section 2.3.2).

3.2 Basic Progressive GeoMipMap streaming

There are certain applications that require visualization of
terrain-data which will not fit into memory in its entirety.
To solve this problem, only those terrain blocks that need
to be rendered or are at least near the camera need to be
loaded from disk and stored in memory. Whenever
terrain blocks, which are not already stored in memory,
become visible, they need to be loaded from disk. This
can be done through streaming.

At application startup time, the quadtree is generated for
the whole terrain. The node’s boundingboxes x, and z
coordinates can be calculated beforehand, and the y-
coordinates need to be read from the terrain-data bitmap
file.
We need to step through every terrain block and do the
following:

1) Load terrain block
2) Calculate terrain block’s boundingbox and store

it in appropriate leaf
3) Calculate all GeoMipMap levels for this terrain

block
4) Calculate Dn for every GeoMipMap Level and

store it in the terrain block’s quadtree leaf.
5) Erase all GeoMipMapLevels and proceed step

1) to 5) for the next terrain blocks

After this, we are left with the quadtree of the whole
landscape, with every leaf containing all its terrain blocks
Dn values. Note that we have not stored any
GeoMipMaps.
 At run-time, the quadtree’s visible leafs’ Dn values are
compared to the current d and the appropriate
GeoMipMap level is created from disk. Whenever d is
smaller than the currently loaded GeoMipMap’s Dn, the
appropriate GeoMipMap level is created progressively.
This is a brief description of the technique, and can be
further extended.

4 REAL-TIME RESULTS

The method described in this paper has been
implemented as part of the E-mersion Project. It currently
only uses the basic algorithm; features such as explained
in section 3 have not been implemented although it
should not be quite difficult to integrate this into the E-
mersion terrain renderer. Figure 6 shows a screenshot of
GeoMipMaps in action. As you can see, terrain blocks
that are further away from the viewer are drawn at a
higher level in the GeoMipMap chain (lower resolution)
unless the geometric error is too high even for that
distance.
 Entire terrain blocks are drawn using one draw-
primitive call using indexed vertices to further speed up
rendering. In this demo, τ=8.0 is used. An average frame-
rate of 50 s-1 is reached with about 11,000 triangles per
frame, on a PentiumII 434 Mhz with a Diamond Viper
550 and 64 MB RAM.

A runnable demo can be found on my website (URL at
the top of this paper) on the main page. 3d rendering
hardware is, obviously, required.

6

Figure 6: Blend of two screenshots from the E-mersion
terrain renderer taken from the same camera point. One
screenshot clearly shows GeoMipMaps in action.

5 CONCLUSION

In this paper I have described a method for rendering
terrain-data at high speed using 3d rendering hardware.
Because of the ability of 3d rendering hardware to render
a large amount of triangles, one has to design an
algorithm which makes use of this, and is able to process
a large amount of triangles while keeping CPU overhead
at a low level. This means that the algorithm has to resort
to more conservative culling methods thereby not
delivering the ‘perfect data-set’. The method described in
this paper is, in my opinion, suitable for this problem.
Preventing per-triangle tests as much as possible, I have
basically written an extension to block-based Level of
Detail. Block based Level of Detail has proven itself to
be very useful and fast for use with 3d hardware
rendering, because of its low CPU performance overhead.
The noticable popping artifacts - which is the nature of
block-based LoD methods - has been reduced by using
screen-

space pixel errors, and can be totally eliminated using the
trilinear ‘morphing’ method I described. While block
based LoD has been used before, I have never seen it
being used and compared to texture mipmaps in the way
GeoMipMaps do. This method is not too difficult to
comprehend and, more importantly, will not result in
complex (read: slow) code, which is one of the key
factors when designing algorithms to be used together
with 3d rendering hardware. The quote “Keep It Simple,
Stupid” definitely applies to algorithms which make use
of 3d rendering hardware.

About the Author

I am currently employed as a Software Engineer at the
R&D department of a game-development company based
in The Netherlands. If you have any questions regarding
this paper or anything about terrain rendering in general,
you can contact me. Please send me an e-mail to the
address found at the top of this paper. Questions that have
already been answered in this paper will not be answered
again.

7

Acknowledgements

Thanks go to Kent Kuné for helping me out with the
graphical design aspects of the E-mersion project; to
Edward Kmett for giving me helpful advice when solving
terrain geometry-gaps; to Simon O’Connor, and Jacco
Bikker for taking the time to read and comment on the
pre-release version of this paper; and to Lourens Veen for
making it possible for this document to be be viewed as a
Portable Document Format file.

References

[1] Real-Time, Continuous Level of Detail Rendering of
Height Fields. Peter Lindstrom, David Koller, William
Ribarsky, Larry F. Hodges, Nick Faust, and Gregory A.
Turner. In Proceedings of ACM SIGGRAPH 96, August
1996, pp. 109-118.
http://www.cc.gatech.edu/gvu/people/peter.lindstrom/

[2] The NetImmerse Terrain System. Dave Eberly, Director of
Engineering, Numerical Design, Ltd.
http://www.ndl.com/terrainwhitepaper.html

[3] ROAMing Terrain: Real-time Optimally Adapting
Meshes. Mark Duchaineau, LLNL, Murray Wolinksy,
LANL, David E. Sigeti, LANL, Mark C. Miller, LLNL,
Charles Aldrich, LANL, Mark B. Mineev-Weinstein,
LANL.
http://www.llnl.gov/graphics/ROAM/

[4] Continuous LOD Terrain Meshing Using Adaptive
Quadtrees. Thatcher Ulrich, Slingshot Game Technology.
http://www.gamasutra.com/features/20000228/ulrich_01.h
tm

[5] Real-Time Rendering. Tomas Möller, Eric Haines. A K
Peters, Ltd. ISBN 1-56881-101-2

