Hosting by Solid Eight Studios ,PhotoTangler Collage Maker

This section of the archives stores flipcode's complete Developer Toolbox collection, featuring a variety of mini-articles and source code contributions from our readers.

 Perlin Noise Class   Submitted by

This source provides a C++ wrapper around Ken Perlin's noise function. I know there already is a Perlin noise function on the COTD collection, but this one serves a specific purpose. The C++ wrapper allows you to create multiple instances of perlin noise functions so you can have completely determinstic and distinct noise textures. Each instance of the 'Perlin' class can be sampled independently of the other, always returning the same randomized results. You construct an instance of Perlin as follows: Perlin *perlin = new Perlin(4,4,1,94); The first parameter is the number of octaves, this is how noisy or smooth the function is. This is valid between 1 and 16. A value of 4 to 8 octaves produces fairly conventional noise results. The second parameter is the noise frequency. Values betwen 1 and 8 are reasonable here. You can try sampling the data and plotting it to the screen to see what numbers you like. The last parameter is the amplitude. Setting this to a value of 1 will return randomized samples between -1 and +1. The last parameter is the random number seed. This number is what causes this instance of the Perlin to be deterministic and distanct from any other instance. The perlin noise function creates some random number tables that are sampled during queries. This random number seed determines the contents of those tables so that you will get the same exact results every time you use it. To retrieve a sample you simply call the method 'Get' and pass it the X and Y sample point to query. X and Y should be in the ranges of 0 to 1. So if you are sampling for a bitmap be sure and scale the pixel co-ordinates down into normalized values. Each instance of Perlin contains it's own random number tables and sampling values. This class is extremely convenient if you just need a quick and dirty way to do some kind of distribution pattern that looks halfway decent. John

Currently browsing [perlinclass.zip] (1,914 bytes) - [perlin.cpp] - (4,211 bytes)

 ```/* coherent noise function over 1, 2 or 3 dimensions */ /* (copyright Ken Perlin) */#include #include #include #include "perlin.h"#define B SAMPLE_SIZE #define BM (SAMPLE_SIZE-1)#define N 0x1000 #define NP 12 /* 2^N */ #define NM 0xfff#define s_curve(t) ( t * t * (3.0f - 2.0f * t) ) #define lerp(t, a, b) ( a + t * (b - a) )#define setup(i,b0,b1,r0,r1)\ t = vec[i] + N;\ b0 = ((int)t) & BM;\ b1 = (b0+1) & BM;\ r0 = t - (int)t;\ r1 = r0 - 1.0f;float Perlin::noise1(float arg) { int bx0, bx1; float rx0, rx1, sx, t, u, v, vec[1]; vec[0] = arg; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0, bx0,bx1, rx0,rx1); sx = s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return lerp(sx, u, v); }float Perlin::noise2(float vec[2]) { int bx0, bx1, by0, by1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v; int i, j; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0,bx0,bx1,rx0,rx1); setup(1,by0,by1,ry0,ry1); i = p[bx0]; j = p[bx1]; b00 = p[i + by0]; b10 = p[j + by0]; b01 = p[i + by1]; b11 = p[j + by1]; sx = s_curve(rx0); sy = s_curve(ry0); #define at2(rx,ry) ( rx * q[0] + ry * q[1] ) q = g2[b00]; u = at2(rx0,ry0); q = g2[b10]; v = at2(rx1,ry0); a = lerp(sx, u, v); q = g2[b01]; u = at2(rx0,ry1); q = g2[b11]; v = at2(rx1,ry1); b = lerp(sx, u, v); return lerp(sy, a, b); }float Perlin::noise3(float vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; int i, j; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); #define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0); a = lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0); b = lerp(t, u, v); c = lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1); a = lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1); b = lerp(t, u, v); d = lerp(sy, a, b); return lerp(sz, c, d); }void Perlin::normalize2(float v[2]) { float s; s = (float)sqrt(v[0] * v[0] + v[1] * v[1]); s = 1.0f/s; v[0] = v[0] * s; v[1] = v[1] * s; }void Perlin::normalize3(float v[3]) { float s; s = (float)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); s = 1.0f/s; v[0] = v[0] * s; v[1] = v[1] * s; v[2] = v[2] * s; }void Perlin::init(void) { int i, j, k; for (i = 0 ; i < B ; i++) { p[i] = i; g1[i] = (float)((rand() % (B + B)) - B) / B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (float)((rand() % (B + B)) - B) / B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (float)((rand() % (B + B)) - B) / B; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; g1[B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[B + i][j] = g3[i][j]; }} float Perlin::perlin_noise_2D(float vec[2]) { int terms = mOctaves; float freq = mFrequency; float result = 0.0f; float amp = mAmplitude; vec[0]*=mFrequency; vec[1]*=mFrequency; for( int i=0; i

Currently browsing [perlinclass.zip] (1,914 bytes) - [perlin.h] - (868 bytes)

 ```#ifndef PERLIN_H_#define PERLIN_H_#include #define SAMPLE_SIZE 1024class Perlin { public: Perlin(int octaves,float freq,float amp,int seed); float Get(float x,float y) { float vec[2]; vec[0] = x; vec[1] = y; return perlin_noise_2D(vec); };private: void init_perlin(int n,float p); float perlin_noise_2D(float vec[2]); float noise1(float arg); float noise2(float vec[2]); float noise3(float vec[3]); void normalize2(float v[2]); void normalize3(float v[3]); void init(void); int mOctaves; float mFrequency; float mAmplitude; int mSeed; int p[SAMPLE_SIZE + SAMPLE_SIZE + 2]; float g3[SAMPLE_SIZE + SAMPLE_SIZE + 2][3]; float g2[SAMPLE_SIZE + SAMPLE_SIZE + 2][2]; float g1[SAMPLE_SIZE + SAMPLE_SIZE + 2]; bool mStart;};#endif ```

The zip file viewer built into the Developer Toolbox made use of the zlib library, as well as the zlibdll source additions.